3.5.1. Diffusion and ventilation

Oxygen enters the spiracle, passes through the length of the tracheae to the tracheoles and into the target cells by a combination of ventilation and diffusion along a concentration gradient, from high in the external air to low in the tissue. Whereas the net movement of oxygen molecules in the tracheal system is inward, the net movement of carbon dioxide and (in terrestrial insects) water vapor molecules is outward. Hence gas exchange in most terrestrial insects is a compromise between securing sufficient oxygen and reducing water loss via the spiracles. During periods of inactivity, the spiracles in many insects are kept closed most of the time, opening only periodically. In insects of xeric environments, the spiracles may be small with deep atria or have a mesh of cuticular projections in the orifice.

In insects without air sacs, such as most holometabolous larvae, diffusion appears to be the primary mechanism for the movement of gases in the tracheae and is always the sole mode of gas exchange at the tissues. The efficiency of diffusion is related to the distance of diffusion and perhaps to the diameter of the tracheae (Box 3.2). Recently, rapid cycles of tracheal compression and expansion have been observed in the head and thorax of some insects using X-ray videoing. Movements of the hemolymph and body could not explain these cycles, which appear to be a new mechanism of gas exchange in insects. In addition, large or dilated tracheae may serve as an oxygen reserve when the spiracles are closed. In very active insects, especially large ones, active pumping movements of the thorax and/or abdomen ventilate (pump air through) the outer parts of the tracheal system and so the diffusion pathway to the tissues is reduced.

Rhythmic thoracic movements and/or dorsoventral flattening or telescoping of the abdomen expels air, via the spiracles, from extensible or some partially compressible tracheae or from air sacs. Co-ordinated opening and closing of the spiracles usually accompanies ventilatory movements and provides the basis for the unidirectional air flow that occurs in the main tracheae of larger insects. Anterior spiracles open during inspiration and posterior ones open during expiration. The presence of air sacs, especially if large or extensive, facilitates ventilation by increasing the volume of tidal air that can be changed as a result of ventilatory movements. If the main tracheal branches are strongly ventilated, diffusion appears sufficient to oxygenate even the most actively respiring tissues, such as flight muscles. How- ever, the design of the gas-exchange system of insects places an upper limit on size because, if oxygen has to diffuse over a considerable distance, the requirements of a very large and active insect either could not be met, even with ventilatory movements and compression and expansion of tracheae, or would result in substantial loss of water through the spiracles. Interestingly, many large insects are long and thin, thereby minimizing the diffusion distance from the spiracle along the trachea to any internal organ.


  The tracheal system and gas exchange

  The gut, digestion, and nutrition

Chapter 3