4.1.2. Position mechanoreception (proprioceptors)


Insects require continuous knowledge of the relative position of their body parts such as limbs or head, and need to detect how the orientation of the body relates to gravity. This information is conveyed by proprioceptors (self-perception receptors), of which three types are described here. One type of trichoid sensillum gives a continuous sensory output at a frequency that varies with the position of the hair. Sensilla often form a bed of grouped small hairs, a hair plate, at joints or at the neck, in contact with the cuticle of an adjacent body part (Fig. 4.2a). The degree of flexion of the joint gives a variable stimulus to the sensilla, thereby allowing monitoring of the relative positions of different parts of the body.

The second type, stretch receptors, comprise internal proprioceptors associated with muscles such as those of the abdominal and gut walls. Alteration of the length of the muscle fiber is detected by multiple-inserted neuron endings, producing variation in the rate of firing of the nerve cell. Stretch receptors monitor body functions such as abdominal or gut distension, or ventilation rate.

The third type are stress detectors on the cuticle via stress receptors called campaniform sensilla. Each sensillum comprises a central cap or peg surrounded by a raised circle of cuticle and with a single neuron per sensillum (Fig. 4.2b). These sensilla are located on joints, such as those of legs and wings, and other places liable to distortion. Locations include the haltere (the knob-like modified hind wing of Diptera), at the base of which there are dorsal and ventral groups of campani- form sensilla that respond to distortions created during flight.

Proprioceptors:
Figures 4.2. Proprioceptors:

(a) sensilla of a hair plate located at a joint, showing how the hairs are stimulated by contacting adjacent cuticle; (b) campaniform sensillum on the haltere of a fly. ((a) After Chapman 1982; (b) after Snodgrass 1935; McIver 1985)

Chapter 4