6.8.1. Genetic polymorphism


The distinction between the sexes is an example of a particular polymorphism, namely sexual dimorphism, which in insects is almost totally under genetic determination. Environmental factors may affect sexual expression, as in castes of some social insects or in feminization of genetically male insects by mermithid nematode infections. Aside from the dimorphism of the sexes, different genotypes may co-occur within a single species, maintained by natural selection at specific frequencies that vary from place to place and time to time throughout the range. For example, adults of some gerrid bugs are fully winged and capable of flight, whereas other coexisting individuals of the same species are brachypterous and cannot fly. Intermediates are at a selective disadvantage and the two genetically determined morphs coexist in a balanced polymorphism. Some of the most complex, genetically based, polymorphisms have been discovered in butterflies that mimic chemically protected butterflies of another species (the model) for purposes of defense from predators (section 14.5). Some butterfly species may mimic more than one model and, in these species, the accuracy of the several distinct mimicry patterns is maintained because inappropriate intermediates are not recognized by predators as being distasteful and are eaten. Mimetic polymorphism predominantly is restricted to the females, with the males generally monomorphic and non-mimetic. The basis for the switching between the different mimetic morphs is relatively simple Mendelian genetics, which may involve relatively few genes or supergenes.

It is a common observation that some individual species with a wide range of latitudinal distributions show different life-history strategies according to location. For example, populations living at high latitudes (nearer the pole) or high elevation may be univoltine, with a long dormant period, whereas populations nearer the equator or lower in elevation may be multivoltine, and develop continuously without dormancy. Dormancy is environmentally induced (sections 6.5 & 6.10.2), but the ability of the insect to recognize and respond to these cues is programmed genetically. In addition, at least some geographical variation in life histories results from genetic polymorphism.

Chapter 6