15.3. Insects as causes and vectors of disease


In tropical and subtropical regions, scientific, if not public, attention is drawn to the role of insects in transmitting protists, viruses, bacteria, and nematodes. Such pathogens are the causative agents of many important and widespread human diseases, including malaria, dengue, yellow fever, onchocerciasis (river blindness), leishmaniasis (oriental sore, kala-azar), filariasis (elephantiasis), and trypanosomiasis (sleeping sickness).

The causative agent of diseases may be the insect itself, such as the human body or head louse (Pediculus humanus corporis and P. humanus capitis, respectively), which cause pediculosis, or the mite Sarcoptes scabiei, whose skin-burrowing activities cause the skin disease scabies. In myiasis (from myia, the Greek for fly) the maggots or larvae of blow flies, house flies, and their relatives (Diptera: Calliphoridae, Sarcophagidae, and Muscidae) can develop in living flesh, either as primary agents or subsequently following wounding or damage by other insects, such as ticks and biting flies. If untreated, the animal victim may die. As death approaches and the flesh putrefies through bacterial activity, there may be a third wave of specialist fly larvae, and these colonizers are present at death. One particular form of myiasis affecting livestock is known as “strike” and is caused in the Old World by Chrysomya bezziana and in the Americas by the New World screw-worm fly, Cochliomyia hominivorax (Fig. 6.6h; section 16.10). The name “screw-worm” derives from the distinct rings of setae on the maggot resembling a screw. Virtually all myiases, including screw-worm, can affect humans, particularly under conditions of poor hygiene. Further groups of “higher” Diptera develop in mammals as endoparasitic larvae in the dermis, intestine, or, as in the sheep nostril fly, Oestrus ovis, in the nasal and head sinuses. In many parts of the world, losses caused by fly-induced damage to hides and meat, and death as a result of myiases, may amount to many millions of dollars.

Even more frequent than direct injury by insects is their action as vectors, transmitting disease-inducing pathogens from one animal or human host to another. This transfer may be by mechanical or biological means. Mechanical transfer occurs, for example, when a mosquito transfers myxomatosis from rabbit to rabbit in the blood on its proboscis. Likewise, when a cockroach or house fly acquires bacteria when feeding on feces it may physically transfer some bacteria from its mouthparts, legs, or body to human food, thereby transferring enteric diseases. The causative agent of the disease is passively transported from host to host, and does not increase in the vector. Usually in mechanical transfer, the arthropod is only one of several means of pathogen transfer, with poor public and personal hygiene often providing additional pathways.

In contrast, biological transfer is a much more specific association between insect vector, pathogen, and host, and transfer never occurs naturally without all three components. The disease agent replicates (increases) within the vector insect, and there is often close specificity between vector and disease agent. The insect is thus a vital link in biological transfer, and efforts to curb disease nearly always involve attempts to reduce vector numbers. In addition, biologically transferred disease may be controlled by seeking to interrupt contact between vector and host, and by direct attack on the pathogen, usually whilst in the host. Disease control comprises a combination of these approaches, each of which requires detailed knowledge of the biology of all three components — vector, pathogen, and host.

Examples of larval types. Polypod larvae:
Figures 6.6. Examples of larval types. Polypod larvae:

(a) Lepidoptera: Sphingidae; (b) Lepidoptera: Geometridae; (c) Hymenoptera: Diprionidae. Oligopod larvae: (d) Neuroptera: Osmylidae; (e) Coleoptera: Carabidae; (f ) Coleoptera: Scarabaeidae. Apod larvae: (g) Coleoptera: Scolytidae; (h) Diptera: Calliphoridae; (i) Hymenoptera: Vespidae. ((a, e-g) After Chu 1949; (b, c) after Borror et al. 1989; (h) after Ferrar 1987; (i) after CSIRO 1970)

Chapter 15